Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
bioRxiv ; 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38370764

RESUMO

Although only a fraction of CTCF motifs are bound in any cell type, and few occupied sites overlap cohesin, the mechanisms underlying cell-type specific attachment and ability to function as a chromatin organizer remain unknown. To investigate the relationship between CTCF and chromatin we applied a combination of imaging, structural and molecular approaches, using a series of brain and cancer associated CTCF mutations that act as CTCF perturbations. We demonstrate that binding and the functional impact of WT and mutant CTCF depend not only on the unique binding properties of each protein, but also on the genomic context of bound sites and enrichment of motifs for expressed TFs abutting these sites. Our studies also highlight the reciprocal relationship between CTCF and chromatin, demonstrating that the unique binding properties of WT and mutant proteins have a distinct impact on accessibility, TF binding, cohesin overlap, chromatin interactivity and gene expression programs, providing insight into their cancer and brain related effects.

2.
Res Sq ; 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37577603

RESUMO

Aberrations in the capacity of DNA/chromatin modifiers and transcription factors to bind non-coding regions can lead to changes in gene regulation and impact disease phenotypes. However, identifying distal regulatory elements and connecting them with their target genes remains challenging. Here, we present MethNet, a pipeline that integrates large-scale DNA methylation and gene expression data across multiple cancers, to uncover novel cis regulatory elements (CREs) in a 1Mb region around every promoter in the genome. MethNet identifies clusters of highly ranked CREs, referred to as 'hubs', which contribute to the regulation of multiple genes and significantly affect patient survival. Promoter-capture Hi-C confirmed that highly ranked associations involve physical interactions between CREs and their gene targets, and CRISPRi based scRNA Perturb-seq validated the functional impact of CREs. Thus, MethNet-identified CREs represent a valuable resource for unraveling complex mechanisms underlying gene expression, and for prioritizing the verification of predicted non-coding disease hotspots.

3.
Nat Rev Mol Cell Biol ; 23(6): 383, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35352008
4.
Epigenomics ; 14(6): 327-330, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35195040

RESUMO

In this interview, Professor Jane Skok speaks with Storm Johnson, commissioning editor for Epigenomics, on her work to date in the field of chromosome architecture and regulatory elements. Jane Skok's lab uses sophisticated microscopic techniques to visualize recombination in individual cells, tracing the dynamic changes in chromosome architecture and nuclear location at different stages of this complex process. This line of research unites two lifelong passions: science and art. After completing her PhD in immunology and genetics at the Imperial Cancer Research Fund in Lincoln's Inn Fields, Dr Skok took 12 years off and pursued training in art while caring for her young children. She then returned to science, joining David Gray's lab at Imperial College London as a postdoctoral fellow to study B cell biology and acquired expertise in Mandy Fisher's lab to understand how nuclear organization of the antigen receptor genes regulate V(D)J recombination and allelic exclusion. Dr Skok continued to pursue these questions in her own lab at University College London and elucidated the roles of Pax5, locus contraction and nuclear subcompartmentalization in maintaining allelic exclusion. In 2006, Dr Skok was recruited to New York University School of Medicine, where her lab has revealed the activities of several signaling factors in guiding B cell development and they made the surprising discovery that the RAG proteins and the DNA damage response factor ATM help ensure allelic exclusion at the immunoglobulin gene loci. More recently, those at the Skok lab have turned their attention to understanding how localized and long-range chromatin contacts impact gene regulation in health and disease settings.


Assuntos
Linfócitos B , Recombinação V(D)J , Criança , Pré-Escolar , Cromatina , Epigenômica , Feminino , Humanos
5.
Nat Genet ; 54(2): 202-212, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35145304

RESUMO

CCCTC-binding factor (CTCF) is critical to three-dimensional genome organization. Upon differentiation, CTCF insulates active and repressed genes within Hox gene clusters. We conducted a genome-wide CRISPR knockout (KO) screen to identify genes required for CTCF-boundary activity at the HoxA cluster, complemented by biochemical approaches. Among the candidates, we identified Myc-associated zinc-finger protein (MAZ) as a cofactor in CTCF insulation. MAZ colocalizes with CTCF at chromatin borders and, similar to CTCF, interacts with the cohesin subunit RAD21. MAZ KO disrupts gene expression and local contacts within topologically associating domains. Similar to CTCF motif deletions, MAZ motif deletions lead to derepression of posterior Hox genes immediately after CTCF boundaries upon differentiation, giving rise to homeotic transformations in mouse. Thus, MAZ is a factor contributing to appropriate insulation, gene expression and genomic architecture during development.


Assuntos
Fator de Ligação a CCCTC/metabolismo , Proteínas de Ligação a DNA/metabolismo , Células-Tronco Embrionárias/metabolismo , Genes Homeobox , Proteínas de Homeodomínio/genética , Fatores de Transcrição/metabolismo , Animais , Fator de Ligação a CCCTC/química , Fator de Ligação a CCCTC/genética , Sistemas CRISPR-Cas , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular , Linhagem Celular , Cromatina/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Células-Tronco Embrionárias/citologia , Edição de Genes , Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Fatores de Transcrição/química , Fatores de Transcrição/genética
6.
Cancer Discov ; 12(4): 1022-1045, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34911733

RESUMO

Resistance to targeted therapies is an important clinical problem in HER2-positive (HER2+) breast cancer. "Drug-tolerant persisters" (DTP), a subpopulation of cancer cells that survive via reversible, nongenetic mechanisms, are implicated in resistance to tyrosine kinase inhibitors (TKI) in other malignancies, but DTPs following HER2 TKI exposure have not been well characterized. We found that HER2 TKIs evoke DTPs with a luminal-like or a mesenchymal-like transcriptome. Lentiviral barcoding/single-cell RNA sequencing reveals that HER2+ breast cancer cells cycle stochastically through a "pre-DTP" state, characterized by a G0-like expression signature and enriched for diapause and/or senescence genes. Trajectory analysis/cell sorting shows that pre-DTPs preferentially yield DTPs upon HER2 TKI exposure. Cells with similar transcriptomes are present in HER2+ breast tumors and are associated with poor TKI response. Finally, biochemical experiments indicate that luminal-like DTPs survive via estrogen receptor-dependent induction of SGK3, leading to rewiring of the PI3K/AKT/mTORC1 pathway to enable AKT-independent mTORC1 activation. SIGNIFICANCE: DTPs are implicated in resistance to anticancer therapies, but their ontogeny and vulnerabilities remain unclear. We find that HER2 TKI-DTPs emerge from stochastically arising primed cells ("pre-DTPs") that engage either of two distinct transcriptional programs upon TKI exposure. Our results provide new insights into DTP ontogeny and potential therapeutic vulnerabilities. This article is highlighted in the In This Issue feature, p. 873.


Assuntos
Neoplasias da Mama , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Transdução de Sinais
7.
Proc Natl Acad Sci U S A ; 117(49): 31343-31352, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33229554

RESUMO

Development of progenitor B cells (ProB cells) into precursor B cells (PreB cells) is dictated by immunoglobulin heavy chain checkpoint (IgHCC), where the IgHC encoded by a productively rearranged Igh allele assembles into a PreB cell receptor complex (PreBCR) to generate signals to initiate this transition and suppressing antigen receptor gene recombination, ensuring that only one productive Igh allele is expressed, a phenomenon known as Igh allelic exclusion. In contrast to a productively rearranged Igh allele, the Igh messenger RNA (mRNA) (IgHR) from a nonproductively rearranged Igh allele is degraded by nonsense-mediated decay (NMD). This fact prohibited firm conclusions regarding the contribution of stable IgHR to the molecular and developmental changes associated with the IgHCC. This point was addressed by generating the IghTer5H∆TM mouse model from IghTer5H mice having a premature termination codon at position +5 in leader exon of IghTer5H allele. This prohibited NMD, and the lack of a transmembrane region (∆TM) prevented the formation of any signaling-competent PreBCR complexes that may arise as a result of read-through translation across premature Ter5 stop codon. A highly sensitive sandwich Western blot revealed read-through translation of IghTer5H message, indicating that previous conclusions regarding a role of IgHR in establishing allelic exclusion requires further exploration. As determined by RNA sequencing (RNA-Seq), this low amount of IgHC sufficed to initiate PreB cell markers normally associated with PreBCR signaling. In contrast, the IghTer5H∆TM knock-in allele, which generated stable IgHR but no detectable IgHC, failed to induce PreB development. Our data indicate that the IgHCC is controlled at the level of IgHC and not IgHR expression.


Assuntos
Linfócitos B/citologia , Linfócitos B/metabolismo , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/metabolismo , Alelos , Animais , Biomarcadores/metabolismo , Loci Gênicos , Camundongos Endogâmicos C57BL , Células Precursoras de Linfócitos B/citologia , Células Precursoras de Linfócitos B/imunologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes
8.
Stem Cell Reports ; 15(6): 1233-1245, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-32976761

RESUMO

Methylation of histone 3 at lysine 9 (H3K9) constitutes a roadblock for cellular reprogramming. Interference with methyltransferases or activation of demethylases by the cofactor ascorbic acid (AA) facilitates the derivation of induced pluripotent stem cells (iPSCs), but possible interactions between specific methyltransferases and AA treatment remain insufficiently explored. We show that chemical inhibition of the methyltransferases EHMT1 and EHMT2 counteracts iPSC formation in an enhanced reprogramming system in the presence of AA, an effect that is dependent on EHMT1. EHMT inhibition during enhanced reprogramming is associated with rapid loss of H3K9 dimethylation, inefficient downregulation of somatic genes, and failed mesenchymal-to-epithelial transition. Furthermore, transient EHMT inhibition during reprogramming yields iPSCs that fail to efficiently give rise to viable mice upon blastocyst injection. Our observations establish novel functions of H3K9 methyltransferases and suggest that a functional balance between AA-stimulated enzymes and EHMTs supports efficient and less error-prone iPSC reprogramming to pluripotency.


Assuntos
Reprogramação Celular , Histona-Lisina N-Metiltransferase/metabolismo , Células-Tronco Pluripotentes Induzidas/enzimologia , Animais , Histona-Lisina N-Metiltransferase/genética , Histonas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Metilação , Camundongos
10.
Genome Biol ; 21(1): 108, 2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-32393311

RESUMO

BACKGROUND: Ubiquitously expressed CTCF is involved in numerous cellular functions, such as organizing chromatin into TAD structures. In contrast, its paralog, CTCFL, is normally only present in the testis. However, it is also aberrantly expressed in many cancers. While it is known that shared and unique zinc finger sequences in CTCF and CTCFL enable CTCFL to bind competitively to a subset of CTCF binding sites as well as its own unique locations, the impact of CTCFL on chromosome organization and gene expression has not been comprehensively analyzed in the context of CTCF function. Using an inducible complementation system, we analyze the impact of expressing CTCFL and CTCF-CTCFL chimeric proteins in the presence or absence of endogenous CTCF to clarify the relative and combined contribution of CTCF and CTCFL to chromosome organization and transcription. RESULTS: We demonstrate that the N terminus of CTCF interacts with cohesin which explains the requirement for convergent CTCF binding sites in loop formation. By analyzing CTCF and CTCFL binding in tandem, we identify phenotypically distinct sites with respect to motifs, targeting to promoter/intronic intergenic regions and chromatin folding. Finally, we reveal that the N, C, and zinc finger terminal domains play unique roles in targeting each paralog to distinct binding sites to regulate transcription, chromatin looping, and insulation. CONCLUSION: This study clarifies the unique and combined contribution of CTCF and CTCFL to chromosome organization and transcription, with direct implications for understanding how their co-expression deregulates transcription in cancer.


Assuntos
Fator de Ligação a CCCTC/metabolismo , Montagem e Desmontagem da Cromatina , Proteínas de Ligação a DNA/metabolismo , Regulação Neoplásica da Expressão Gênica , Animais , Células-Tronco Embrionárias , Feminino , Humanos , Masculino , Camundongos
11.
Curr Opin Genet Dev ; 61: 44-52, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32334335

RESUMO

CTCF plays a key role in organizing chromatin into TAD structures but it can also function as a transcription factor. CTCFL (CTCF-like), the paralog of CTCF, is normally transiently expressed in pre-meiotic male germ cells together with ubiquitously expressed CTCF. It plays a unique role in spermatogenesis by regulating expression of testis-specific genes. Genetic alterations in CTCF and its paralog CTCFL have both been found in numerous cancers, but it remains unknown to what extent CTCFL deregulates transcription on its own or by opposing CTCF. Here, we discuss some of the potential mechanisms by which these two proteins could alter gene regulation and contribute to oncogenic transcriptional programs.


Assuntos
Fator de Ligação a CCCTC/genética , Proteínas de Ligação a DNA/genética , Neoplasias/genética , Fatores de Transcrição/genética , Cromatina/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Neoplasias/patologia , Regiões Promotoras Genéticas
12.
Nat Genet ; 52(4): 378-387, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32203468

RESUMO

Mutations in genes involved in DNA methylation (DNAme; for example, TET2 and DNMT3A) are frequently observed in hematological malignancies1-3 and clonal hematopoiesis4,5. Applying single-cell sequencing to murine hematopoietic stem and progenitor cells, we observed that these mutations disrupt hematopoietic differentiation, causing opposite shifts in the frequencies of erythroid versus myelomonocytic progenitors following Tet2 or Dnmt3a loss. Notably, these shifts trace back to transcriptional priming skews in uncommitted hematopoietic stem cells. To reconcile genome-wide DNAme changes with specific erythroid versus myelomonocytic skews, we provide evidence in support of differential sensitivity of transcription factors due to biases in CpG enrichment in their binding motif. Single-cell transcriptomes with targeted genotyping showed similar skews in transcriptional priming of DNMT3A-mutated human clonal hematopoiesis bone marrow progenitors. These data show that DNAme shapes the topography of hematopoietic differentiation, and support a model in which genome-wide methylation changes are transduced to differentiation skews through biases in CpG enrichment of the transcription factor binding motif.


Assuntos
Diferenciação Celular/genética , Metilação de DNA/genética , Hematopoese/genética , Animais , DNA (Citosina-5-)-Metiltransferases/genética , Proteínas de Ligação a DNA/genética , Células-Tronco Hematopoéticas/fisiologia , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Mutação/genética , Transcrição Gênica/genética , Transcriptoma/genética
13.
Nat Commun ; 10(1): 4843, 2019 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-31649247

RESUMO

CTCF and cohesin play a key role in organizing chromatin into topologically associating domain (TAD) structures. Disruption of a single CTCF binding site is sufficient to change chromosomal interactions leading to alterations in chromatin modifications and gene regulation. However, the extent to which alterations in chromatin modifications can disrupt 3D chromosome organization leading to transcriptional changes is unknown. In multiple myeloma, a 4;14 translocation induces overexpression of the histone methyltransferase, NSD2, resulting in expansion of H3K36me2 and shrinkage of antagonistic H3K27me3 domains. Using isogenic cell lines producing high and low levels of NSD2, here we find oncogene activation is linked to alterations in H3K27ac and CTCF within H3K36me2 enriched chromatin. A logistic regression model reveals that differentially expressed genes are significantly enriched within the same insulated domain as altered H3K27ac and CTCF peaks. These results identify a bidirectional relationship between 2D chromatin and 3D genome organization in gene regulation.


Assuntos
Montagem e Desmontagem da Cromatina/genética , Regulação Neoplásica da Expressão Gênica/genética , Histona-Lisina N-Metiltransferase/genética , Mieloma Múltiplo/genética , Proteínas Repressoras/genética , Sítios de Ligação , Fator de Ligação a CCCTC/metabolismo , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proteínas Cromossômicas não Histona/metabolismo , Expressão Gênica/genética , Humanos , Modelos Logísticos , Coesinas
14.
Nat Commun ; 10(1): 4768, 2019 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-31628339

RESUMO

B-1a cells are long-lived, self-renewing innate-like B cells that predominantly inhabit the peritoneal and pleural cavities. In contrast to conventional B-2 cells, B-1a cells have a receptor repertoire that is biased towards bacterial and self-antigens, promoting a rapid response to infection and clearing of apoptotic cells. Although B-1a cells are known to primarily originate from fetal tissues, the mechanisms by which they arise has been a topic of debate for many years. Here we show that in the fetal liver versus bone marrow environment, reduced IL-7R/STAT5 levels promote immunoglobulin kappa gene recombination at the early pro-B cell stage. As a result, differentiating B cells can directly generate a mature B cell receptor (BCR) and bypass the requirement for a pre-BCR and pairing with surrogate light chain. This 'alternate pathway' of development enables the production of B cells with self-reactive, skewed specificity receptors that are peculiar to the B-1a compartment. Together our findings connect seemingly opposing lineage and selection models of B-1a cell development and explain how these cells acquire their unique properties.


Assuntos
Subpopulações de Linfócitos B/imunologia , Linfócitos B/imunologia , Diferenciação Celular/imunologia , Receptores de Células Precursoras de Linfócitos B/imunologia , Receptores de Antígenos de Linfócitos B/imunologia , Animais , Subpopulações de Linfócitos B/metabolismo , Linfócitos B/metabolismo , Medula Óssea/imunologia , Medula Óssea/metabolismo , Diferenciação Celular/genética , Cadeias Leves Substitutas da Imunoglobulina/genética , Cadeias Leves Substitutas da Imunoglobulina/imunologia , Cadeias Leves Substitutas da Imunoglobulina/metabolismo , Fígado/embriologia , Fígado/imunologia , Fígado/metabolismo , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Células Precursoras de Linfócitos B/genética , Receptores de Células Precursoras de Linfócitos B/metabolismo , Receptores de Antígenos de Linfócitos B/genética , Receptores de Antígenos de Linfócitos B/metabolismo , Receptores de Interleucina-7/genética , Receptores de Interleucina-7/imunologia , Receptores de Interleucina-7/metabolismo , Fator de Transcrição STAT5/genética , Fator de Transcrição STAT5/imunologia , Fator de Transcrição STAT5/metabolismo
15.
Cell Rep ; 26(1): 108-118.e4, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30605667

RESUMO

B cell development is a highly regulated process that requires stepwise rearrangement of immunoglobulin genes to generate a functional B cell receptor (BCR). The polycomb group protein BMI1 is required for B cell development, but its function in developing B cells remains poorly defined. We demonstrate that BMI1 functions in a cell-autonomous manner at two stages during early B cell development. First, loss of BMI1 results in a differentiation block at the pro-B cell to pre-B cell transition due to the inability of BMI1-deficient cells to transcribe newly rearranged Igh genes. Accordingly, introduction of a pre-rearranged Igh allele partially restored B cell development in Bmi1-/- mice. In addition, BMI1 is required to prevent premature p53 signaling, and as a consequence, Bmi1-/- large pre-B cells fail to properly proliferate. Altogether, our results clarify the role of BMI1 in early B cell development and uncover an unexpected function of BMI1 during VDJ recombination.


Assuntos
Linfócitos B/citologia , Linfócitos B/imunologia , Rearranjo Gênico do Linfócito B , Genes de Imunoglobulinas , Complexo Repressor Polycomb 1/imunologia , Proteínas Proto-Oncogênicas/imunologia , Proteína Supressora de Tumor p53/imunologia , Animais , Diferenciação Celular/fisiologia , Feminino , Expressão Gênica , Masculino , Camundongos , Camundongos Knockout , Complexo Repressor Polycomb 1/deficiência , Complexo Repressor Polycomb 1/genética , Proteínas Proto-Oncogênicas/deficiência , Proteínas Proto-Oncogênicas/genética , Proteína Supressora de Tumor p53/genética
16.
Genome Biol ; 19(1): 216, 2018 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-30541598

RESUMO

BACKGROUND: The organization of chromatin in the nucleus plays an essential role in gene regulation. About half of the mammalian genome comprises transposable elements. Given their repetitive nature, reads associated with these elements are generally discarded or randomly distributed among elements of the same type in genome-wide analyses. Thus, it is challenging to identify the activities and properties of individual transposons. As a result, we only have a partial understanding of how transposons contribute to chromatin folding and how they impact gene regulation. RESULTS: Using PCR and Capture-based chromosome conformation capture (3C) approaches, collectively called 4Tran, we take advantage of the repetitive nature of transposons to capture interactions from multiple copies of endogenous retrovirus (ERVs) in the human and mouse genomes. With 4Tran-PCR, reads are selectively mapped to unique regions in the genome. This enables the identification of transposable element interaction profiles for individual ERV families and integration events specific to particular genomes. With this approach, we demonstrate that transposons engage in long-range intra-chromosomal interactions guided by the separation of chromosomes into A and B compartments as well as topologically associated domains (TADs). In contrast to 4Tran-PCR, Capture-4Tran can uniquely identify both ends of an interaction that involve retroviral repeat sequences, providing a powerful tool for uncovering the individual transposable element insertions that interact with and potentially regulate target genes. CONCLUSIONS: 4Tran provides new insight into the manner in which transposons contribute to chromosome architecture and identifies target genes that transposable elements can potentially control.


Assuntos
Elementos de DNA Transponíveis , Regulação da Expressão Gênica , Genômica/métodos , Animais , Retrovirus Endógenos , Humanos , Camundongos , Polimorfismo Genético
17.
Nat Commun ; 9(1): 3594, 2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-30185805

RESUMO

The inheritance of gene expression patterns is dependent on epigenetic regulation, but the establishment and maintenance of epigenetic landscapes during T cell differentiation are incompletely understood. Here we show that two stage-specific Cd4 cis-elements, the previously characterized enhancer E4p and a novel enhancer E4m, coordinately promote Cd4 transcription in mature thymic MHC-II-specific T cells, in part through the canonical Wnt pathway. Specifically, E4p licenses E4m to orchestrate DNA demethylation by TET1 and TET3, which in turn poises the Cd4 locus for transcription in peripheral T cells. Cd4 locus demethylation is important for subsequent Cd4 transcription in activated peripheral T cells wherein these cis-elements become dispensable. By contrast, in developing thymocytes the loss of TET1/3 does not affect Cd4 transcription, highlighting an uncoupled event between transcription and epigenetic modifications. Together our findings reveal an important function for thymic cis-elements in governing gene expression in the periphery via a heritable epigenetic mechanism.


Assuntos
Antígenos CD4/genética , Linfócitos T CD4-Positivos/fisiologia , Elementos Facilitadores Genéticos/fisiologia , Epigênese Genética/fisiologia , Regulação da Expressão Gênica/fisiologia , Animais , Antígenos CD4/metabolismo , Diferenciação Celular/genética , Quimera , Desmetilação do DNA , Metilação de DNA/fisiologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dioxigenases , Feminino , Técnicas de Inativação de Genes , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Timo/citologia , Timo/fisiologia
18.
Mol Cell ; 70(6): 1149-1162.e5, 2018 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-29932905

RESUMO

Polycomb repressive complex 2 (PRC2) maintains gene silencing by catalyzing methylation of histone H3 at lysine 27 (H3K27me2/3) within chromatin. By designing a system whereby PRC2-mediated repressive domains were collapsed and then reconstructed in an inducible fashion in vivo, a two-step mechanism of H3K27me2/3 domain formation became evident. First, PRC2 is stably recruited by the actions of JARID2 and MTF2 to a limited number of spatially interacting "nucleation sites," creating H3K27me3-forming Polycomb foci within the nucleus. Second, PRC2 is allosterically activated via its binding to H3K27me3 and rapidly spreads H3K27me2/3 both in cis and in far-cis via long-range contacts. As PRC2 proceeds further from the nucleation sites, its stability on chromatin decreases such that domains of H3K27me3 remain proximal, and those of H3K27me2 distal, to the nucleation sites. This study demonstrates the principles of de novo establishment of PRC2-mediated repressive domains across the genome.


Assuntos
Complexo Repressor Polycomb 2/metabolismo , Proteínas do Grupo Polycomb/metabolismo , Animais , Cromatina/metabolismo , Inativação Gênica , Código das Histonas , Histonas/metabolismo , Lisina/metabolismo , Metilação , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Embrionárias Murinas , Ligação Proteica , Processamento de Proteína Pós-Traducional
19.
Epigenomics ; 10(4): 483-498, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29583027

RESUMO

Enhancers are short noncoding segments of DNA (100-1000 bp) that control the temporal and spatial activity of genes in an orientation-independent manner. They can be separated from their target genes by large distances and are thus known as distal regulatory elements. One consequence of the variability in the distance separating enhancers and their target promoters is that it is difficult to determine which elements are involved in the regulation of a particular gene. Moreover, enhancers can be found in clusters in which multiple regulatory elements control expression of the same target gene. However, little is known about how the individual elements contribute to gene expression. Here, we describe how chromatin conformation promotes and constraints enhancer activity. Further, we discuss enhancer clusters and what is known about the contribution of individual elements to the regulation of target genes. Finally, we examine the reliability of different methods used to identify enhancers.


Assuntos
Elementos Facilitadores Genéticos , Cromatina/química , Humanos , Elementos Isolantes , Regiões Promotoras Genéticas
20.
Curr Opin Immunol ; 51: 24-31, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29414528

RESUMO

B-1a cells remain one of the most enigmatic lymphocyte subsets. In this review, we discuss recent advances in our understanding of the development of these cells and their regulation by the transcription factors Bhlhe41 and Arid3a as well as by the RNA-binding protein Lin28b. A large body of literature supports an instructive role of BCR signaling in B-1a cell development and lineage commitment, which is initiated only after signaling from an autoreactive BCR. While both fetal and adult hematopoiesis can generate B-1a cells, the contribution of adult hematopoiesis to the B-1a cell compartment is low under physiological conditions. We discuss several models that can reconcile the instructive role of BCR signaling with this fetal bias in B-1a cell development.


Assuntos
Subpopulações de Linfócitos B/citologia , Subpopulações de Linfócitos B/metabolismo , Diferenciação Celular , Receptores de Antígenos de Linfócitos B/metabolismo , Transdução de Sinais , Animais , Subpopulações de Linfócitos B/imunologia , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Linhagem da Célula , Seleção Clonal Mediada por Antígeno , Evolução Molecular , Regulação da Expressão Gênica no Desenvolvimento , Rearranjo Gênico do Linfócito B/genética , Rearranjo Gênico do Linfócito B/imunologia , Humanos , Imunoglobulinas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA